A new type of water-soluble phosphine for biphasic catalysis *

François Mercier and François Mathey

Laboratoire "Hétéroéléments et Coordination" URA CNRS 1499 CDPH, Ecole Polytechnique, 91128 Palaiseau Cedex (France) (Received February 2, 1993)

Abstract

The reaction of the [4 + 2] dimer of 3,4-dimethyl-2*H*-phosphole with maleic anhydride in boiling THF gives the 2*H*-phospholemaleic anhydride [4 + 2] endocyclo-adduct in 60% yield. Upon treatment with sodium hydroxide, this cyclo-adduct is transformed into the sodium salt of 3,4-dimethyl-1-phospha-2-norbornene-5,6-dicarboxylic acid which is very soluble in water (≥ 300 g/l) and is not extracted from water by organic solvents such as toluene and dichloromethane.

1. Introduction

Since the successful development of the Veba-Rhône Poulenc process for the hydroformylation of olefins in a two-phase system [1], a number of new water-soluble phosphines have been described for use in biphasic catalysis [2]. Some of the latest include phosphines containing sugar substructures [3], phosphonate chains [4], sulfonated diphosphines derived from a biphenyl backbone [5], and chiral sulfonated phosphines for the asymmetric hydrogenation of dehydropeptides [6].

During recent years, we have described a simple route for the synthesis of bicyclic phosphines with phosphorus atoms at the bridgehead from transient 2H-phospholes (eqns. (1), (2)).

These phosphines have significant activity in the rhodium-catalyzed hydrogenation [10] and hydroformylation of olefins [11]. They can also be prepared in optically pure form [12] and they display an interesting specificity since the asymmetric phosphorus centre cannot racemise. Thus, we felt that the synthesis of watersoluble bicyclic phosphines of this type would be worthwhile.

2. Results and discussion

In a preliminary attempt, we decided to take advantage of the equilibrium which appears upon heating between 1-phenyl-1*H*-phospholes and 2-phenyl-5*H*phospholes [7,8]. We planned to trap selectively the 5*H*-phosphole with maleic anhydride in order to introduce two hydrophilic carboxylate groups into the resulting phosphine. In fact, maleic anhydride is reactive enough to also add to the 1*H*-phosphole to give a 7-phosphanorbornene side-product, as does *N*-phenylmaleimide [13] (eqn. (3)).

The desired 1-phosphanorbornene (3) is obtained as a mixture of two isomers with an endo or exo junction. The 7-phosphanorbornene (4) has an anti geometry at

Correspondence to: Professor F. Mathey.

^{*} Dedicated to Professor Lappert for his 65th birthday as a tribute to an outstanding Main-Group and Transition-Metal chemist.

P as shown by its ³¹P resonance at relatively high field $(\delta(^{31}P) 4 + 49 \text{ ppm}; \text{ see } [13,14])$ and the high ²J(C-P) coupling of the Me-C sp² carbon atoms, 18.3 Hz (see [15]). The endo junction in 4 is not definitively proven but it seems logical for steric reasons and is suggested by the magnitude of the ³J(H-P) coupling of the hydrogen atoms at the junction. The value of 13.3 Hz is similar to those recorded by Quin [16] for anti endofused 7-phosphanorbornenes of proven structure.

In order to avoid the formation of 4, we then investigated the reaction of the preformed [4 + 2] dimer of 5*H*-phosphole (2) [17] with maleic anhydride. Since the dimer-monomer equilibrium comes into effect already at around 100°C, the reaction with maleic anhydride is cleaner and produces only 3 (eqn. (4)).

The product obtained after chromatography on silica gel is a mixture of the two endo and exo isomers, easily distinguished by ³¹P NMR spectroscopy: $\delta(^{31}P)$ **3a** + 1.4 ppm; $\delta(^{31}P)$ **3b** + 5.4 ppm (in CDCl₃). Upon standing in solution, **3b** tends to form **3a** slowly during several days. The key feature allowing us to establish the stereochemistry of **3a** and **3b** is the ²J(H-P) coupling within the P-CH-COO unit. This coupling is weak (2.9 Hz) in **3b** and strong (10.6 Hz) in **3a**. According to our previous work [9], these data mean that **3b** has an exo and **3a** an endo junction.

The endo anhydride readily dissolves in aqueous base. However, since both the yield of **3a** and the hydrophilicity of the corresponding carboxylate were not satisfactory, we chose to prepare a similar structure without the phenyl substituent. We started from the [4+2] dimer of 3,4-dimethyl-2*H*-phosphole (6) obtained by protonation of the 3,4-dimethylphospholide anion [18]. The reaction with maleic anhydride yields 7 as pure isomer in satisfactory yield (eqn. (5)).

The ${}^{2}J(H-P)$ coupling within the P-CH-COO unit is high (10.6 Hz), thus establishing the endo stereochemistry at the junction. The anhydride 7 readily reacts with aqueous base to give the dicarboxylate 8 (eqn. (6)).

Both the ²J(H–P) coupling within the P–CH–COO unit (8.1 Hz) and the ³J(H–H) coupling between the protons at the endo junction (10.8 Hz) in 8 are similar to those in 7, thus showing that the two carboxylate groups are on the endo side. The dicarboxylate 8 is highly soluble in water ($\geq 300 \text{ g/l}$) and is not extracted from water either by toluene or by dichloromethane. Upon treatment with 3 N hydrochloric acid, it gives the corresponding diacid 9 which precipitates and can be solubilized by dichloromethane. The diacid [δ (³¹P) 9 – 17.0 ppm in CDCl₃] slowly loses water to regenerate the anhydride [δ (³¹P) (7) – 14.8 ppm]. We are currently investigating the coordination chemistry of 8.

3. Experimental section

All reactions were carried out under argon and silica gel (70–230 mesh) was used for chromatographic separations. NMR spectra were recorded on a Bruker AC 200 SY spectrometer operating at 200.13 MHz for ¹H, 50.32 MHz for ¹³C and 81.01 MHz for ³¹P. Chemical shifts are expressed in parts per million downfield from internal TMS (¹H and ¹³C) or external 85% H_3PO_4 (³¹P). Mass spectra were obtained at 70 eV with a Shimadzu GC-MS QP 1000 spectrometer by the direct inlet method. Elemental analyses were performed by the 'Service d'analyse du CNRS' at Gif-sur-Yvette, France.

3.1. Synthesis of 1-phosphanorbornene (3)

A solution of 1.9 g of phosphole 1 [19] (10 mmol) in 10 ml of dry xylene was heated under reflux for 2 h. The solution was kept at 100°C, and 1.0 g of maleic anhydride (10 mmol) in 10 ml of toluene was added in 1 h. After cooling, 3 ml of hexane were added and the crude solution was chromatographed. Elution with hexane toluene (30:70) gave 500 mg of a mixture of two isomers 3a/3b (70:30), yield 18%.

3a (endo): ¹H NMR (CDCl₃): δ 1.60–1.80 (m, 2H, CH₂); 1.73 (s, 3H, CH₃); 1.93 (s, 3H, CH₃); 3.30 (d, 1H, ³*J*(H_{α}-H_{β}) = 8.4 Hz, H_{β}); 3.89 (dd, 1H, ³*J*(H_{α}-H_{β}) = 8.4 Hz; ²*J*(H-P) = 10.6 Hz, H_{α}). ¹³C NMR (CDCl₃): δ 14.7 (CH₃); 20.1 (CH₃); 46.0 (d, ¹*J*(C-P) = 27.8 Hz, CH₂); 51.4 (s, C_{β}H); 52.7 (d, ¹*J*(C-P) = 8.3 Hz, C_{α}H); 65.1 (d, ²*J*(C-P) = 6.1 Hz, C-Me); 136.4 (d, ²*J*(C-P) = 20.3 Hz, =C-Me); 139.7 (d, ¹*J*(C-P) = 23.0 Hz, =C-Ph); 170.3 and 170.4 (CO). ³¹P NMR (CDCl₃): δ 1.4 ppm. MS: m/z (relative intensity) 286 (M⁺, 8), 188 (M⁺-C₄H₂O₃, 100). IR (CH₂Cl₂): γ (C=O) 1780 cm⁻¹.

3b (exo): ¹H NMR (CDCl₃): δ 1.30–1.80 (m, 2H, CH₂); 1.67 (s, CH₃); 1.91 (s, CH₃); 2.85 (d, ³*J*(H_{α}-H_{β}) = 7.6 Hz, H_{β}); 3.38 (dd, 1H, ²*J*(H–P) = 2.95 Hz, ³*J*(H_{α}-H_{β}) = 7.6 Hz, H_{α}). ¹³C NMR (CDCl₃): δ 12.9 (CH₃); 17.9 (CH₃); 49.5 (d, ¹*J*(C–P)) = 40.0 Hz, CH₂); 49.7–53.5 (2CH). ³¹P NMR (CDCl₃): δ 5.4 ppm.

3.2. Synthesis of 7-phosphanorbornene (4)

A mixture of 1.9 g of phosphole 1 (10 mmol) and 1.0 g of maleic anhydride (10 mmol) was heated under reflux in xylene (15 ml) for 1 h. The brown solution was extracted at room temperature with dichloromethane. After concentration, 7-phosphanorbornene (4) crystallized, m.p. 188°C, yield 600 mg (20%). ¹H NMR (CDCl₃): δ 1.80 (s, 6H, CH₃); 3.38 (m, 2H, ³J(H-H) = 1.8 Hz, ²J(H-P) = 13.4 Hz, CH-P); 3.59 (pseudo t, 2H, ³J(H-H) = 1.8 Hz, CH-CO). ¹³C NMR (CDCl₃): δ 13.4 (s, CH₃); 49.9 (s, CH); 50.2 (s, CH); 135.0 (d, ²J(C-P) = 18.3 Hz, =C-Me); 172.0 (s, CO). ³¹P NMR (CDCl₃): δ 49.9 ppm. MS: m/z (relative intensity) 286 (M⁺, 45), 108 (P-Ph⁺, 100).

3.3. Synthesis of 1-phosphanorbornene (7) (endo)

The dimer 6 [18], prepared from 7.6 g of phosphole 1 (40 mmol), was heated under reflux in THF (50 ml) and a solution of 4.0 g of maleic anhydride in THF (20 ml) was added in 0.5 h. The solution was concentrated and chromatographed on a short column of silica gel. Elution with dichloromethane yielded 4.8 g of 1-phosphanorbornene (7) (60%), m.p. (toluene) 92°C. ¹H NMR (CDCl₃): δ 1.60 (2H, CH₂); 1.66 (s, CH₃); 1.89 (s, CH₃); 3.29 (d, 1H, ${}^{3}J(H-H) = 8.54$ Hz, CH_B); 3.85 (dd, 1H, ${}^{2}J(H-P) = 10.6$ Hz, ${}^{3}J(H_{\alpha}-H_{\beta}) = 8.54$ Hz, CH_{α} ; 5.98 (d, 1H, ²J(H–P) = 46.1 Hz, =CH). ¹³C NMR $(CDCl_3)$: δ 18.2 (s, CH₃); 19.4 (s, CH₃); 45.9 (d, ${}^{1}J(C-P) = 27.0 \text{ Hz}, CH_{2}$; 51.2 (s, CH); 54.4 (d, J(C-P)= 7.9 Hz, CH); 63.6 (d, ${}^{2}J(C-P) = 6.0$ Hz, CMe); 125.3 $(d, {}^{1}J(C-P) = 26.9 \text{ Hz}, =CH); 163.7 (s, =CMe); 170.6 (s, =CMe);$ CO). ³¹P NMR (CDCl₃): δ -14.9 ppm. MS: m/z(relative intensity) 210 (M^+ , 11), 112 ($M^+ - C_4 H_2 O_3$, 100). IR (CH₂Cl₃): γ (CO) 1780 cm⁻¹.

3.4. Synthesis of the dicarboxylate (8)

The anhydride 7 (945 mg, 4.5×10^{-3} mol) was dissolved in 3 ml of a deoxygenated 3 N solution of NaOH at room temperature. This took 0.5 h. After the solution had become homogeneous, it was extracted with dichloromethane or toluene. No ³¹P NMR signal was detected in the organic phase. Evaporation of the water phase yielded pure **8**. 8: ¹H NMR (D₂O): δ 1.30 (d, 2H, ²*J*(H–P) = 8.6 Hz, CH₂); 1.46 (s, 3H, CH₃); 1.94 (s, 3H, CH₃); 2.91 (d, ³*J*(H_α-H_β) = 10.8 Hz, CH_β); 3.51 (dd, ²*J*(H–P) = 8.10 Hz, ³*J*(H_α-H_β) = 10.8 Hz, CH_α); 5.97 (d, 1H, ²*J*(H–P) = 44.0 Hz, = CH). ¹³C NMR (D₂O): δ 19.0 (s, CH₃); 20.0 (s, CH₃); 50.7 (s, CH_β); 52.5 (d, ¹*J*(C–P) = 13.7 Hz, CH₂); 56.3 (s, CH_α); 61.6 (d, ²*J*(C–P) = 4.2 Hz, *C*Me); 124.7 (d, ¹*J*(C–P) = 18.4 Hz, =CH), 163.2 (d, ²*J*(C–P) = 3.8 Hz, =*C*-Me); 180.6 and 180.9 (2s, CO). ³¹P NMR (D₂O): δ - 29.47 ppm.

3.5 Synthesis of diacid (9)

An excess of 3 N hydrochloric acid (4 ml) was added to the aqueous solution of dicarboxylate, **8**, prepared as described above. The white precipitate was extracted twice with dichloromethane (2 × 5 ml), yielding quantitatively the diacid **9**. ¹H NMR (CDCl₃): δ 1.35 (2H, CH₂); 1.49 (s, 3H, CH₃); 2.04 (s, 3H, CH₃); 2.86 (d, 1H, ³*J*(H_{α}-H_{β}) = 10.32 Hz, CH_{β}); 3.68 (dd, ³*J*(H_{α}-H_{β}) = 10.32 Hz, ²*J*(H-P) = 8.44 Hz, CH_{α}); 5.84 (d, 1H, ²*J*(H-P) = 46.5 Hz = CH). ¹³C NMR (CDCl₃): δ 19.3 and 19.8 (2s, CH₃); 47.8 (d, ¹*J*(C-P) = 25.3 Hz, CH₂); 52.3 (s, CH); 52.7 (s, CH); 61.0 (d, ²*J*(C-P) = 4.9 Hz, *C*-Me); 125.4 (d, ¹*J*(C-P) = 25.6 Hz, =CH); 163.6 (s, =CMe); 177.7 (s, CO). ³¹P NMR (CDCl₃): δ -17.0 ppm. MS: *m*/*z* (relative intensity) 228 (M⁺, 6), 112 (M⁺-C₄H₄O₄, 100).

References

- 1 E.G. Kuntz, Chem. Tech., (1987) 570.
- 2 Reviews: D. Sinou, Bull. Soc. Chim. Fr., (1987) 480; T.G. Southern, Polyhedron, 8 (1989) 407; P. Falck and F. Monteil, Adv. Organomet. Chem., 34 (1992) 219.
- 3 T.N. Mitchell and K. Heesche-Wagner, J. Organomet. Chem., 436 (1992) 43.
- 4 S. Ganguly, J.T. Mague and D.M. Roundhill, *Inorg. Chem.*, 31 (1992) 3500.
- 5 W.A. Herrmann, C.W. Kohlpaintner, H. Bahrmann and W. Konkol, J. Mol. Catal., 73 (1992) 191.
- 6 M. Laghmari, D. Sinou, A. Masdeu and C. Claver, J. Organomet. Chem., 438 (1992) 213.
- 7 F. Mathey, F. Mercier, C. Charrier, J. Fischer and A. Mitschler, J. Am. Chem. Soc., 103 (1981) 4595.
- 8 M.O. Bevierre, F. Mercier, L. Ricard and F. Mathey, Bull. Soc. Chim. Fr., 129 (1992) 1.
- 9 P. Le Goff, F. Mathey and L. Ricard, J. Org. Chem., 54 (1989) 4754.
- 10 F. Mathey, D. Neibecker and A. Brèque (SNPE), Fr. 2588197, 3 Oct. 1985; Chem. Abstr., 107 (1987) 219468v.
- 11 D. Neibecker and R. Reau, Angew. Chem. Int. Ed. Engl., 28 (1989) 500.
- 12 A. Brèque, J.M. Alcaraz, L. Ricard and F. Mathey, New. J. Chem., 13 (1989) 369.
- 13 F. Mathey and F. Mercier, Tetrahedron Lett., 22 (1981) 319.

- 14 L.D. Quin and K.A. Mesch, J. Chem. Soc., Chem. Commun., (1980) 959.
- 15 L.D. Quin, K.C. Caster, J.C. Kisalus and K.A. Mesch, J. Am. Chem. Soc. 106 (1984) 7021.
- 16 See the data of compound 26 in [15].

- 17 For the characterization of this dimer, see: F. Mercier and F. Mathey, J. Organomet. Chem., 263 (1984) 55.
- 18 G. de Lauzon, C. Charrier, H. Bonnard, F. Mathey, J. Fischer and A. Mitschler, J. Chem. Soc., Chem. Commun., (1982) 1272.
- 19 A. Brèque, F. Mathey and P. Savignac, Synthesis, (1981) 983.